
Supplementary: On the Accurate Large-scale Simulation of Ferrofluids

LIBO HUANG, TORSTEN HÄDRICH, DOMINIK L. MICHELS, KAUST
ACM Reference Format:
Libo Huang, Torsten Hädrich, Dominik L. Michels. 2019. Supplementary: On
the Accurate Large-scale Simulation of Ferrofluids. ACM Trans. Graph. 38, 4,
Article 93 (July 2019), 5 pages. https://doi.org/10.1145/3306346.3322973

S1 SINGLE PARTICLE MAGNETIC FIELD
In this section, we provide the detailed derivation of the magnetic
field H generated by a particle with a spherically symmetric distri-
butionW :

M(r ) = mW (r ) =mW (|r |) ,

∇ ·H = −∇ ·M ,

∇ ×H = 0 ,
H |∞ = 0 .

Since H is curl-free, it can be represented by a negative gradient of
a potential field ϕ:

H (r ) = −∇ϕ(r ) .

We substitute the gradient representation into the divergence equa-
tion and obtain

∆ϕ = ∇ ·M , (S1)
ϕ |∞ = 0 .

In order to solve this problem, we borrow ideas from electrostatics
since Eq. (S1) resembles the Poisson’s equation for an electric po-
tential with dipole sources. We first need to realize that the dipole is
simply a superposition of positive and negative charges. Letm = q l
be constant, where q is the amount of charge, and l is the separation
of two charges. The larger the distance, the less charges they have.
Let there be a positive charge distribution q1(r ) centered at l , and a
negative charge distribution q2(r ) centered at the origin:

q+(r ) = qW (|r − l |) ,

q−(r ) = −qW (|r |) .

In electrostatics, the potential formed by a point charge distribution
pδ (r ) at the origin satisfies the following Poisson’s equation:

∆φ = −
p

ε0
δ (r ) ,

E = −∇φ ,
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where ε0 is the vacuum permittivity constant. We investigate the
total potential ϕt formed by two opposite charges by changing the
point charge distribution to our charge distribution:

∆ϕ+ = −q+(r ) = −qW (|r − l |) ,

∆ϕ− = −q−(r ) = qW (|r |) ,

ϕt = ϕ+ + ϕ− ,

∆ϕt = −q(W (|r − l | −W (|r |)))

= ql
W (|r |) −W (|r − l |)

l
,

ϕt = 0 at infinity .

When the center of the positive charge shrinks to the origin, using
m = ql the total potential becomes the dipole potential:

lim
l→0

∆ϕt = lim
l→0

ql
W (|r |) −W (|r − l |)

l

=m · ∇W (r )

= ∇ ·mW

= ∇ ·M(r )

= ∆ϕ .

Therefore we observe that a dipole’s equation and two opposite
charges’ equation have the same right hand side. In addition, they
have the same vanishing boundary condition, so they have the same
solution due to the uniqueness of solutions.

We ultimately need to find the negative gradient of the potential:

H+ = −∇ϕ+ ,

H− = −∇ϕ− .

For an electric point charge pδ (r ) , the solution to the electrostat-
ics equation is

E(r ) =
r

4πε0 |r |3
p .

The field generated by charges with spherically symmetric dis-
tributions has a closed-form solution. It is equivalent to the field
generated by a point charge at the center of the distribution with
the equivalent charge being the sum of all charges within the radius
of r = |r |:

H−(r ) =
−r m

l
4π |r |3

∫
|r ′ |< |r |

W (|r ′ |) dr ′

=
−r m

l
4π |r |3

∫ |r |

0 ξ 2W (ξ ) dξ
∫ 2π
0

∫ π
0 sinθ dθ dϕ

=
−r m

l
|r |3

∫ |r |

0 ξ 2W (ξ ) dξ ,

H+(r ) =
(r −l )ml
4π |r −l |3

∫
|r ′−l |< |r −l |W (|r ′ − l |) dr ′

=
(r −l )ml
|r −l |3

∫ |r −l |
0 ξ 2W (ξ ) dξ ,
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H (r ) = lim
l→0

H+(r ) +H−(r )

= lim
l→0

(r − l)ml
|r − l |3

∫ |r −l |

0
ξ 2W (ξ ) dξ

−
r ml
|r |3

∫ |r |

0
ξ 2W (ξ ) dξ

= lim
l→0

r ml
|r − l |3

∫ |r −l |

0
ξ 2W (ξ ) dξ

−
r ml
|r |3

∫ |r |

0
ξ 2W (ξ ) dξ

−
lml

|r − l |3

∫ |r −l |

0
ξ 2W (ξ ) dξ . (S2)

The last term has a trivial limit:

lim
l→0

lml
|r − l |3

∫ |r −l |

0
ξ 2W (ξ ) dξ = m

|r |3

∫ |r |

0
ξ 2W (ξ ) dξ .

We consider the first two terms on the right-hand side of Eq. (S2):

liml→0
r m

l
|r −l |3

∫ |r −l |
0 ξ 2W (ξ ) dξ

−
r m

l
|r |3

∫ |r |

0 ξ 2W (ξ ) dξ

=mr liml→0
1
l

( ∫ |r −l |

0 ξ 2W (ξ ) dξ
|r −l |3

−

∫ |r |

0 ξ 2W (ξ ) dξ
|r |3

)
. (S3)

Let us set up

f (η) =

∫ η
0 ξ 2W (ξ ) dξ

η3
,

η = |r − l | .

The limit in Eq. (S3) is actually given by the derivative df
dη

dη
dl when

l = 0:

df
dη = −3

∫ η
0 ξ 2W (ξ ) dξ

η4
+
η2W (η)

η3
,

dη
dl =

d|r − l |

dl

=
d(r2 − 2rl cosθ + l2)1/2

dl |l=0

= −r cos(θ )/r
= − cosθ

= −
r · l

rl
,

df
dη

dη
dl =

(
r

r
·
l

l

) (
3

∫ r
0 ξ 2W (ξ ) dξ

r4
−
W (r )

r

)
.

Note that although l reduces to zero, its direction (which is also the
dipole’s direction) is kept. By combining all the results above, we

obtain the total dipole field:

H t = lim
l→0

H+(r ) +H−(r )

= rm

(
r

r
·
l

l

) (
3

∫ r
0 ξ 2W (ξ ) dξ

r4
−
W (r )

r

)
−

m

|r |3

∫ x

0
ξ 2W (ξ ) dξ .

We set r̂ := r/|r |. The previous equation can be further simplified:

H =
r

r
m

(
r

r
·
l

l

) (
3

∫ r
0 ξ 2W (ξ ) dξ

r3
−W (r )

)
−

m

|r |3

∫ r

0
ξ 2W (ξ )dξ

= r̂ (r̂ ·m)

(
3

∫ r
0 ξ 2W (ξ ) dξ

r3
−W (r )

)
−

m

|r |3

∫ r

0
ξ 2W (ξ ) dξ

= r̂ (r̂ ·m)(Wavr(r ) −W (r ))

−Wavr(r )
m

3 , (S4)

where we introduce an intermediate variable

Wavr(r ) =

∫ 2π
0

∫ π
0 sinθ

∫ r
0 ξ 2W (ξ ) dξ dθ dϕ
4π
3 r3

=
3
∫ r
0 ξ 2W (ξ ) dξ

r3
.

The quantityWavr(r ) can be considered as the average of the density
functionW (r ) within the radius of r . It is well defined for r = 0.
Therefore,H (r ) has no singularity and is well defined even for r = 0
unless W (0) is singular. This formula is valid for all spherically
symmetric density functionsW (|r |).

Eq. (S4) is the field generated by a dipole particle with spherically
symmetric density distribution.

S2 FAST MULTIPOLE METHOD DETAILS
The theory of the fast multipole method is well covered in academic
literature [Beatson and Greengard 1997]. Hence, we focus on some
modifications in this section. The source-to-multipole transfer is
explained in the main article. Here, we present the cumbersome
formula for the force gradient in the far-field.

The fast multipole program evaluates the potential Φ at P using

Φ(P) =

∞∑
j=0

j∑
k=−j

Lkj · Y
k
j (θ ,ϕ) · r

j ,

Ymn (θ ,ϕ) =

√
(n − |m |)!
(n + |m |)! · P

|m |
n (cosθ )eimϕ ,

where Lkj are the local expansion coefficients, and (r ,θ ,ϕ) represents
the spherical coordinates of P with the origin being the center of the
local expansion, Ymn is the spheric harmonics, Pmn is the associated
Legendre polynomial.
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This expression results in a scalar field in the neighborhood of the
local expansion center. In order to evaluate the force, we need the
negative gradientH = −∇Φ and the negative Hessian ∇H = −∇∇Φ.

Since the potential field is represented in spherical coordinates,
there is additional work to do in order to convert it into its Cartesian
representation:

∂

∂x
= cosϕ sinθ ∂

∂r
+
cosϕ cosθ

r

∂

∂θ

−
sinϕ
r sinθ

∂

∂ϕ
,

∂

∂y
= sinϕ sinθ ∂

∂r
+
sinϕ cosθ

r

∂

∂θ

+
cosϕ
r sinθ

∂

∂ϕ
,

∂

∂z
= cosθ ∂

∂r
−
sinθ
r

∂

∂θ
,

H (P) = −∇Φ(P) ,

−Hx (P) =
∂Φ(P)

∂x

= cosϕ sinθ ∂Φ(P)
∂r

+
cosϕ cosθ

r

∂Φ(P)

∂θ

−
sinϕ
r sinθ

∂Φ(P)

∂ϕ
,

−Hx,r = cosϕ sinθ ∂
2Φ(P)

∂r2
+
cosϕ cosθ

r

∂2Φ(P)
∂r∂θ

−
cosϕ cosθ

r2
∂Φ(P)

∂θ
+

sinϕ
r2 sinθ

∂Φ(P)

∂ϕ

−
sinϕ
r sinθ

∂2Φ(P)
∂r∂ϕ

,

−Hx,θ = cosϕ cosθ ∂Φ(P)
∂r

+ cosϕ sinθ ∂
2Φ(P)
∂θ∂r

+
− cosϕ sinθ

r

∂Φ(P)

∂θ
+
cosϕ cosθ

r

∂2Φ(P)

∂θ2

cosθ sinϕ
r sin2 θ

∂Φ(P)

∂ϕ
−

sinϕ
r sinθ

∂2Φ(P)
∂θ∂ϕ

,

−Hx,ϕ = − sinϕ sinθ ∂Φ(P)
∂r

+ cosϕ sinθ ∂
2Φ(P)
∂ϕ∂r

+
− sinϕ cosθ

r

∂Φ(P)

∂θ
+
cosϕ cosθ

r

∂2Φ(P)
∂ϕ∂θ

−
cosϕ
r sinθ

∂Φ(P)

∂ϕ
−

sinϕ
r sinθ

∂2Φ(P)

∂ϕ2
,

−Hy (P) =
∂Φ(P)

∂y

= sinϕ sinθ ∂Φ(P)
∂r

+
sinϕ cosθ

r

∂Φ(P)

∂θ

+
cosϕ
r sinθ

∂Φ(P)

∂ϕ
,

−Hy,r = sinϕ sinθ ∂
2Φ(P)

∂r2
−
sinϕ cosθ

r2
∂Φ(P)

∂θ

+
sinϕ cosθ

r

∂2Φ(P)
∂r∂θ

−
cosϕ
r2 sinθ

∂Φ(P)

∂ϕ

+
cosϕ
r sinθ

∂2Φ(P)
∂r∂ϕ

,

−Hy,θ = sinϕ cosθ ∂Φ(P)
∂r

+ sinϕ sinθ ∂
2Φ(P)
∂θ∂r

+
− sinϕ sinθ

r

∂Φ(P)

∂θ
+
sinϕ cosθ

r

∂2Φ(P)

∂θ2

−
cosθ cosϕ
r sin2 θ

∂Φ(P)

∂ϕ
+

cosϕ
r sinθ

∂2Φ(P)
∂θ∂ϕ

,

−Hy,ϕ = cosϕ sinθ ∂Φ(P)
∂r

+ sinϕ sinθ ∂
2Φ(P)
∂ϕ∂r

+
cosϕ cosθ

r

∂Φ(P)

∂θ
+
sinϕ cosθ

r

∂2Φ(P)
∂ϕ∂θ

+
− sinϕ
r sinθ

∂Φ(P)

∂ϕ
+

cosϕ
r sinθ

∂2Φ(P)

∂ϕ2
,

−Hz (P) =
∂Φ(P)

∂z
= cosθ ∂Φ(P)

∂r
−
sinθ
r

∂Φ(P)

∂θ
,

−Hz,r = cosθ ∂
2Φ(P)

∂r2
+
sinθ
r2
∂Φ(P)

∂θ

−
sinθ
r

∂2Φ(P)
∂r∂θ

,

−Hz,θ = − sinθ ∂Φ(P)
∂r

+ cosθ ∂
2Φ(P)
∂θ∂r

−
cosθ
r

∂Φ(P)

∂θ
−
sinθ
r

∂2Φ(P)

∂θ2
,

−Hz,ϕ = cosθ ∂
2Φ(P)
∂ϕ∂r

−
sinθ
r

∂2Φ(P)
∂ϕ∂θ

.

When evaluating Eq. (S5), a crucial step is to evaluate the associ-
ated Legendre polynomial function value. Although the analytical
formulas for every degree n and orderm are known, it is more effi-
cient to deduce the value for different degree n and orderm but keep
the same variables θ and ϕ using its recurrence formulas. The (first
and second) derivatives of the Legendre polynomials Pmn (cos(θ )) are
also obtained using recurrence formulas. After the function values
of the Legendre polynomials and their derivatives are calculated,
they are multiplied with the expansion coefficients Lkj and summed
up to get the potential, the gradient (using the first order derivative),
and the Hessian (using the second order derivatives).

All the derivatives in spherical coordinates need to be converted
into Cartesian coordinates using the formula provided in the first
set of equations. The evaluation of Φθθ requires the second order
derivative of the Legendre polynomial. Its recurrence formulas are

d2P0n
dθ2

=
dP1n (x)
dθ

,

d2Pmn (cosθ )
dθ2

=
−1
2

(
(n +m)(n −m + 1)

dPm−1
n (x)

dθ

−
dPm+1n (x)

dθ

)
,

d2Pnn
dθ2

= −n
dPn−1n
dθ

,
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in which x = cosθ ; see Bösch [2000].

The three formulas above are direct results of√
1 − x2

d

dx
Pmℓ (x) =

1
2

(
(ℓ +m)(ℓ −m + 1)Pm−1

ℓ (x) − Pm+1ℓ (x)
)
.

The first order derivative is obtained by

(x2 − 1) d
dx

Pmℓ (x) = ℓxPmℓ (x) − (ℓ +m)Pmℓ−1(x) .

S3 FITTED FORCE DETAILS
In this section, we provide further details with respect to our force
model described in Section 3.2 of our main article.The total force
f s→t from the source (s) to the target (t) is given by

f s→t = µ0mt ·

∫
W (r − r t ,h)∇H (r − r s ,ms ) dr , (S5)

where the integration only covers regions in whichW (r −r t ,h) , 0.
The source and target center locations are given by r s and r t , and
ms andmt denote the total magnetic moments of the source and
target particle respectively.

For |r t −r s | > 4h, Eq. (S5) has a closed-form solution as explained
in the main article. For |r t − r s | ≤ 4h, H s is not always harmonic,
so that we employ numerical integration. However, the numerical
integration is expensive. Our motivation is to treat the integration as
a black-box system, and find an economic way to parameterize this
black-box system. The integral Eq. (S5) is equivalent to a black-box
function F 0:

f s→t = F 0(r t − r s ,h,mt ,ms ) .

In the following steps, we tear down the multi-variable function F 0
to a single-variable function which we can measure and fit.

In the first step, the black-box F 0 depends not only on the distance
between two particles, but also on the direction. We can remove the
directional dependency by choosing a proper coordinate system to
calculate the integral in Eq. (S5).

We set the origin at the center of the source particle. Let ξ̂ , η̂, ζ̂ be
the unit vectors of the axes and the target particle is on the ζ axis.
Let R be the rotation matrix. A possible choice is given by

if(|r t − r s | > ε) : ζ̂ =
r t − r s
|r t − r s |

, else : ζ̂ = ẑ ,

if(|ζ̂ × ẑ | > ε) : η̂ =
ζ̂ × ẑ

|ζ̂ × ẑ |
, else : η̂ = ŷ ,

ξ̂ =η̂ × ζ̂ , R = (ξ̂ , η̂, ζ̂ ) ,

where ẑ and ŷ are the unit vectors of z and y axis respectively, and
ε is a small number to ensure numerical stability. We call this the
local coordinates. A vector in the world coordinatem is connected
to its local coordinate counterpart m̃ bym = Rm̃ and m̃ = RTm. A
tilde indicates that it is the local coordinate vector. In this coordinate
system, the same physical law from Eq. (S5) holds:

f̃ s→t = µ0m̃t ·

∫
W (r̃ − (0, 0, |r t − r s |)

T,h)∇H (r̃ ,m̃s ) dr̃ . (S6)

The above integration can be written as

f̃ s→t = F 1(|r t − r s |,h,m̃s ,m̃t ) ,

where the function F 1 depends only on the distance.

In the second step, the dependency on m̃s ,m̃t from F 1 is removed.
F 1 is a function of both source and target moments m̃s ,m̃t . Fortu-
nately, the force f̃ s→t is linear in the target momentm̃t , meanwhile,
f̃ s→t is linear in the gradient of magnetic field ∇H (r̃ ,m̃s ), which is
further linear in the source moment m̃s . Therefore, the force is bilin-
ear in both moments, and Eq. (S6) states a mapping: R3 × R3 7→ R3.
This relationship can be described by a third-order tensor with 27
entries. Λ̃ denotes this tensor in the local coordinate system.

F 1(|r t −r s |,h,m̃s ,m̃t ) is then reduced to a tensor Λ̃(|r t −r s |,h):

f̃ αs→t =

3∑
β=1

3∑
γ=1

Λ̃α βγ (|r t − r s |,h)m̃
β
s m̃

γ
t , α ∈ {1, 2, 3} , (S7)

where α , β ,γ denote vector (tensor) components in local coordi-
nates. The equation above is a generalization of the matrix-vector
multiplication:

yα =
3∑

β=1
Aα βxβ .

The first dimension of Λ̃α βγ outputs the force, the second dimen-
sion takes source moments, and the third dimension takes target
moments.
In the third step, the integral formula Eq. (S6) is used to de-

termine the tensor Λ̃α βγ numerically. After h is fixed, the tensor
Λ̃α βγ (|r t − r s |,h) consists of 27 curves as functions of the particle
distance |r t −r s |. First, the kernel size h is fixed, and the normalized
distance is looped q from 0 to 4. The target particle is then placed
on (0, 0,qh)T. The source moment m̃s loops over three directions:
(1, 0, 0)T, (0, 1, 0)T, and (0, 0, 1)T. The target moment m̃t loops over
the same three directions. For each of the combination, the force
f̃ s→t is determined by Eq. (S6) (explained below). After 9 measure-
ments, the tensor value Λ̃α βγ for this distance qh is obtained. For
example, m̃s = (0, 1, 0)T, m̃t = (1, 0, 0)T, the three tensor entries are
determined by

Λ̃α21(qh,h) = f̃ αs→t

for α ∈ {1, 2, 3}.
To measure the force f̃ s→t given a pair of source-target moments

m̃s , m̃t , and distance qh, the integration formula Eq. (S6) is used.
The target particle at r̃ t = (0, 0,qh)T is contained in a cube with
an edge length of 4h because the weight function we choose has a
support of diameter 4h. The container cube is divide into 10×10×10
cells. Each cell is centered at r̃ cell and has an edge length of 0.4h.
We calculate the magnetic force on each cell as

f̃ cell = µ0(0.4h)3W (r̃ cell − r̃ t ,h)m̃t · ∇H (r̃ cell,m̃s ) .

We sum over all cells for the total force f̃ s→t =
∑
cell f̃ cell.

After the measurements for various q and h, we discovered that
when we fix the normalized distance q, the tensor is proportional to
h−4. Most of the 27 entries in Λ̃α βγ are zeros. Finally, the six of the
seven non-zero entries share the same curve C1 : q 7→ C1(q), and
one obtains an unique curve C2 : q 7→ C2(q):

Λ̃311, Λ̃322, Λ̃113, Λ̃223, Λ̃131, Λ̃232 = C1(q)h
−4 ,

Λ̃333 = C2(q)h
−4 .
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We fit the measured tensor entries using piece-wise polynomials
C(q) = a4q

4 + a3q
3 + a2q

2 + a1q + a0 .

We use fourth order polynomials according to Occam’s razor since
we found that third order ones are not sufficient to fit very well. The
polynomial coefficients are listed in Table 3 and 4 in the appendix
of the main paper.

In the forth step, we change the summation variable from forces to
force tensors. Given the tensor Λ̃α βγ , it is clear how to calculate the
force f̃ s→t in local coordinates using m̃s ,m̃t , and how to transform
it back. The total force on one particle f t is given by the summation
of all forces from every source particle f t =

∑
s f s→t .

However, in the large-scale summation, we use the fast multipole
method to accelerate the computations. The fast multipole method
can onlyworkwith the positions of the target particles, but summing
the force requires target moments. Therefore we must change the
force to a quantity independent of the target magnetic momentmt .
In order to do so, the summation in Eq. (S7) is divided into two

parts by introducing a 3 × 3 source force tensor T̃ s :

f̃ s→t = T̃ sm̃t ,

f̃ αs→t =

3∑
γ=1

T̃
αγ
s m̃

γ
t ,

T̃
αγ
s =

3∑
β=1

Λ̃α βγ (|r t − r s |,h)m̃
β
s .

Since Λ̃ is sparse, we can directly write the force tensor T̃ s in local
coordinates:

T̃ s =
©­«

Λ̃131m̃3
s 0 Λ̃113m̃1

s
0 Λ̃232m̃3

s Λ̃223m̃2
s

Λ̃311m̃1
s Λ̃322m̃2

s Λ̃333m̃3
s

ª®¬
=h−4

©­«
m̃3
sC1(q) 0 m̃1

sC1(q)
0 m̃3

sC1(q) m̃2
sC1(q)

m̃1
sC1(q) m̃2

sC1(q) m̃3
sC2(q)

ª®¬ ,
where the superscripts denote the components.

The rotation matrix R is used to transform the force tensor T̃ s to
world coordinates:

f s→t = R f̃ s→t = RT̃ sm̃t = RT̃ sR
Tmt = T smt ,

T s = RT̃ sR
T ,

whereT s is the force tensor in world coordinates.T s only depends
on target position, so that it is suitable for the summation to use the
fast multipole method:

f t =

( N∑
s=1

T s (r t )

)
mt .
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