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Abstract During the last decade, much attention has been given to sound rendering
and the simulation of acoustic phenomena by solving appropriate models described
by Hamiltonian partial differential equations. In this contribution, we introduce a
procedure to develop appropriate tools inspired from geometric integration in order to
simulate musical sounds. Geometric integrators are numerical integrators of excellent
quality that are designed exclusively for Hamiltonian ordinary differential equations.
The introduced procedure is a combination of two techniques in geometric integration:
the semi-discretization method by Celledoni et al. (J Comput Phys 231:6770–6789,
2012) and symplectic partitioned Runge–Kutta methods. This combination turns
out to be a right procedure that derives numerical schemes that are effective and
suitable for computation of musical sounds. By using this procedure we derive a
series of explicit integration algorithms for a simple model describing piano sounds
as a representative example for virtual instruments. We demonstrate the advantage of
the numerical methods by evaluating a variety of numerical test cases.
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1 Introduction

We introduce a systematic procedure inspired from geometric integration in order to
simulate musical sounds. In this context, we consider a piano model as a representa-
tive example for virtual instruments. The piano sounds are computed by integrating a
Hamiltonian partial differential equation (PDE) model describing the oscillations of
the string and an ordinary differential equation (ODE) model describing the dynamics
of the hammer. The procedure has its basis on the semi-discretizationmethod byCelle-
doni et al. [13], which semi-discretizes the PDE to a system of ODEs while preserving
the Hamiltonian structure. This method allows the application of geometric integra-
tors, which are numerical integrators with excellent quality for Hamiltonian ODEs.
Symplectic partitioned Runge–Kutta methods are particularly focused on because
they yield explicit numerical schemes for a certain class of Hamiltonian systems. The
Hamiltonian systems in the class are called separable Hamiltonian systems, whose
Hamiltonian is nicely divided into a sum of two functions. Fortunately, most DEmod-
els in sound synthesis are of this type. One example of such models is a model of bar
vibrations

ut = v, vt = γ 2
s (uxx − ψx ),

ψt = ϵ2φ, ϵ2φt = ϵ2γ 2
l ψxx + γ 2

s (ux − ψ), (x ∈ [0, 1])

H(u,ψ, v,φ) =
∫ 1

0

[
1

2
v2 + ε2

2
φ2 + ε2γ 2

l

2
ψ2
x + γ 2

s

2
(ux − ψ)2

]

dx,

where u is the transverse displacement of the bar, ψ is the rotation of the bar cross-
section relative to the normal, v and φ are the corresponding velocity to u and ψ and
γl , γs , ε ∈ R. Another example is theWebster equation [30] which is a model of sound
waves in vocal tracts or bodies of wind instruments

Spt = γ ux ,
1

S
ut = −γ px , (x ∈ [0, 1])

H(p, u) = γ

2

∫ 1

0

[

Sp2 + 1

S
u2
]

dx,

where the pressure in the tube are denoted with p, the volume velocity in it with u,
the function of x describing the cross-section area of the tube with S and γ ∈ R.
Other examples are introduced, for example, in [9]. In this contribution, we illustrate
that the combination of the above two techniques in geometric integration is a right
procedure for designing numerical schemes for computation of soundwaves, in that the
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procedure indeed facilitates the design of stable numerical schemes for the simulation
of musical instruments.

First, we briefly summarize the recent developments in the field of musical sound
synthesis as well as the difficulties, and illustrate their connections to geometric inte-
gration.

In the past decade, large efforts have been devoted to the simulation of acoustic
effects and sounds. In the context of special effects or more general in computer-
generated movies, this is simply motivated by the fact that traditional computational
physics simulations usually lead to silent movies, because no practical algorithms
existed for synthesizing synchronized sounds automatically. Instead, sound record-
ings were edited manually during the animation process or triggered automatically in
interactive applications. Since the former is inflexible and labor intensive and the latter
one produces dreary and repetitive results, researchers have investigated on this; see
e.g. [32,34]. Furthermore, the simulation of sounds is wellmotivated due to the interest
in the development of virtual instruments. Such digital devices would be superior to
the conventional real musical instruments. For example according to [52] they would
be less expensive because different instruments would be able to share a common
input device; e.g. a virtual flute would be able to produce sounds of any kind of wind
instruments. This makes it affordable for a variety of people enriching their creative
work. Also, tuning and any other kind of labor intensive maintaining would not be
necessary and the transportation of large and sensitive instruments can be avoided and
location-based constraints therefore easily resolved—people from different places can
join a common virtual orchestra.

The conventional approach to sound synthesis of musical instruments is based on
signal processing-related techniques (e.g. [1,2,52,55]). This is currently an estab-
lished way of musical sound synthesis because the produced sounds are fairly well
perceptually and the algorithms are computationally efficient, so that digital interac-
tive sound systems working in real-time can be developed. Although this approach
has achieved a great success, it comes with significant shortcomings: the models have
no definite physical interpretation and the quality of sounds is often less than satis-
factory. In particular, the unpredictable sounds produced by the non-linear interaction
between the input devices (e.g. the hammers in the case of a piano) and the instru-
ments (e.g. the strings and the bodies of the piano) are not successfully reproduced.
These difficulties can be resolved using sound synthesis based on appropriate phys-
ical models of virtual musical instruments. One of the most significant approaches
is the one where the motion of the fundamental components of the instruments is
described by differential equations (e.g. strings, hammers, and bows). Compared to
the conventional approaches inspired by signal processing, the parameters in these
models directly represent physical features of the instruments (e.g. the material of
the body). Appropriate fitting parameters can be integrated, which enables the design
of more realistic models. Previous research in this direction includes the modeling
and simulation of the hammer [11,12,19,53], the key action [31,44,45,48,49], string
vibrations [3–5,17,18,54], and the soundboard [20,21,36]. The interactions between
the components are also considered in the literature; in particular, Chabassier et al.
established amodel and a numerical method for simulation of thewhole piano [14,16].
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Fig. 1 Illustration of an example of computed sound waves for 0.01 s generated from a string of a piano
(left) and the motion of the whole string for the same period (right). There are approximately three periods
observed. Because the motion of the string for each period is almost identical, typically, just one motion
period is computed

The research on sound synthesis using PDEs is still at the beginning and there are
many open problems. In this contribution, we address the challenging development of
efficient and high-quality numerical integration algorithms for such models. This is
a difficult task, because the auditory area of human beings is approximately between
20 and 20,000Hz, for which reason the computation of thousands of vibrations is
required for a sound of just a few seconds. Assume, that this sound wave is generated
from a string with both ends fixed on the body of an instrument so that the vibration
of the string is modeled by the wave equation under Dirichlet boundary conditions

utt − c2uxx = 0, x ∈ (0, L)

u(t, 0) = u(t, L) = 0,

where u is the amplitude of the vibration and c is the speed of thewave. Then each peak
of the sound wave corresponds to one periodic motion of the wave packet; see Fig. 1.
In typical numerical computations of the wave equation, just one period of the periodic
motion is of interest because the behavior of the waves is almost the same in each of
the repetitions. However, in the simulation of sound we need to compute thousands
of periods of the motion. In other words, the simulation of sound waves requires a
long-time calculation compared to the time scale of the phenomena. In those cases,
numerical methods must be carefully designed because conventional ones usually
result in unstable or meaningless solutions.

In this context, one of the most successful approaches is the energy-based one by
Bilbao et al. (e.g. [7–11,15]), which made a breakthrough in this area. Their numerical
schemes are designed in a way, that a discrete approximation of the total energy of
the system is exactly preserved. Because the energy often dominates the norm of the
solution, the preservation of the energy results in a bound of the numerical solution.
Hence this way of construction makes the resulting schemes stable and long-time
calculations possible.

The aim of this contribution is to introduce a procedure that automatically derives
numerical schemes with such a property. The key tools are from geometric integration,
which is briefly explained below.
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Long-time computations are also required in other research areas such as electro-
magnetics, quantum theory, fluid-, electro- andmolecular dynamics, plasma transport,
and celestial mechanics. In such areas so-called geometric integrators are employed to
solve the occurring ordinary, partial, or stochastic differential equations derived from
Hamiltonian mechanics. These methods typically discretize the underlying equations
while preserving the mechanical and/or the geometric structure of the differential
equations. As an example, the discrete gradient method is a method to derive energy-
conservative and energy-dissipative numerical schemes for the Hamilton equation and
the gradient flows, respectively (e.g. [27,28,43,46]). A similar method for PDEs also
exists, which is called the discrete variational derivative method (e.g. [22–24,26]).
Other examples are symplectic integrators, which are numerical methods that pre-
serve the symplecticity of the Hamiltonian flow in the discrete setup. The application
of a backward error analysis shows that numerical solutions of these methods are the
same as solutions of the Hamilton equation which is an approximation of the original
equation [47]. As a consequence, energy conservation laws and other similar con-
servation laws (e.g. the conservation of the linear and the angular momentum) are
approximately preserved by these methods, which leads to a globally accurate behav-
ior. Because of these conservation laws, such algorithms often outclass conventional
numerical methods in stability and reproducibility of significant phenomena.

In this regard, the goal of our work is the development of efficient geometric inte-
grators for the models for musical instruments. The key observation is that most PDE
models for musical instruments are separable Hamiltonian systems. Therefore, as
explained in the first paragraph of this section, symplectic partitioned Runge–Kutta
methods give explicit and hence efficient integrators for these systems. In order to apply
symplectic partitioned Runge–Kutta methods, the models must be semi-discretized
to ODEs while preserving the separable Hamiltonian structure. To achieve this, we
focus our attention on the semi-discretization method, which we call the variational
semi-discretization, byCelledoni et al. [13]. The variational semi-discretization is orig-
inally proposed as a method for deriving a suitable semi-discrete scheme for designing
numerical schemes that preserve a certain energy behavior. However, as suggested in
[13], this method could be used also for deriving semi-discrete schemes for Hamilto-
nian systems while preserving the Hamiltonian structure. The procedure introduced in
this contribution is a combination of this semi-discretization method and symplectic
partitioned Runge–Kutta methods. This procedure automatically derives explicit and
symplectic integrators for most models for musical instruments. In this contribution,
we illustrate this procedure by applying it to a simple model of the piano to develop
symplectic numerical methods.

Remark 1 A similar, but slightly different semi-discretization is obtained by the dis-
crete variational derivative method (DVDM) [22–26,37–42]. The DVDM derives
energy-preserving or -dissipative numerical schemes for a certain class of PDEs. Tak-
ing the limit of the scheme for the Hamilton PDEs by the DVDM as the time step
size goes to 0 yields the semi-discretized Hamilton ODEs in principle. The difference
between these two approaches is the treatment of the boundary conditions. In the vari-
ational semi-discretization, the boundary conditions are included in the definition of
the discrete phase space, and hence semi-discretized schemes by this approach are
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always Hamiltonian. On the other hand, in the DVDM appropriate discrete boundary
conditions are assumed; that is, discrete boundary conditions that are compatible with
the method must be imposed.

This paper is organized as follows. In Sect. 2 the model of the piano is described. In
Sect. 3 we explain the variational semi-discretization, which is the technique to derive
a semi-discrete scheme while preserving the Hamiltonian structure of the equation.
We apply this approach to the piano model for illustration reasons. After that, we
develop several symplectic numerical methods by applying symplectic Runge–Kutta
methods in Sect. 4.

2 Mathematical model for virtual pianos

Pianos are composed of many distinct parts, such as strings, hammers, black and
white keys, and a sounding board. Although an excellent model that consists of most
of these parts was recently proposed in [14,16], we use a rather simplified model,
which only consists of a string part and a hammer part. This is because the aim of this
paper is not the development of a realistic piano model but the introduction of a way to
automatically get a simulationmethod that comprises an arbitrary geometric integrator.

The model we use in this study consists of a wave-type equation

{
ut = v,

vt = c2uxx − κ2uxxxx − d1ut + d3utxx + ε fh,
(1)

for the motion of a string, and the mass-spring model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

duh
dt

= vh,

dvh
dt

= − 1
Mh

fh(u, uh, v, vh),

(2)

for the hammer’s motion. These models are typical for piano simulations. The string
displacement and the velocity are denoted with u(t, x) and v(t, x) respectively, the
wave speed with c, the stiffness with κ , the frequency independent damping coeffi-
cient with d1 and the frequency dependent damping coefficient with d3. Similarly, the
displacement, the velocity and the mass of the hammer are denoted with uh, vh and
Mh. We assume that all the coefficients are positive. Since the ends of the string are
fixed to the piano body, we assume the boundary conditions

u(t, 0) = u(t, L) = uxx (t, 0) = uxx (t, L) = 0. (3)

More practical boundary conditions are provided e.g. in [56]. The non-linear interac-
tion between the hammer and the string is specified using the function

fh(u, uh, v, vh) = −Kh([⟨ε, u⟩ − uh]+)α(1+ µvr), vr = ⟨ε, v⟩ − vh,
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Table 1 Estimated parameter
values used in [4] to describe the
hammer model

Symbol Definition Estimated value

Mh Mass of the Hammer 5.687 × 10−3

Kh Felt stiffness coefficient 1.51647 × 109

α Hammer stiffness exponent 2.56

µ Felt loss coefficient 0.1998

Table 2 Estimated parameter values used in [4] to specifying the C4 tone

Symbol Definition Estimated value

L Length of the string 0.63

c Wave speed 329.6

κ String stiffness coefficient 1.25

d1 Frequency independent damping coefficient 1.1

d3 Frequency dependent damping coefficient 2.7 × 10−4

where we denote the felt stiffness coefficient with Kh, the hammer stiffness exponent
with α and the felt loss coefficient withµ. These coefficients also have a positive value.
Here, ε(x) determines the hammer-string collision profile and satisfies ⟨ε, 1⟩ = 1 so
that ε(x) becomes an approximation to the delta function. The expression [ξ ]+ is
defined by

[ξ ]+ =
{

ξ, (ξ > 0)
0, (otherwise)

and ⟨ε, u⟩ denotes the L2 inner product

⟨ε, u⟩ :=
∫ L

0
ε(x)u(t, x)dx .

The estimated values of the parameters for the C4 tone are listed in Tables 1 and 2.
For parameters of other tones we refer e.g. to [3,4,18].

As it is shownbelow,when thedamping terms are ignored, that is,µ = d1 = d3 = 0,
the above model is a separable Hamiltonian system, which is a system with a remark-
able Hamiltonian structure from a viewpoint of numerical analysis. As explained in
Sect. 4, this special Hamiltonian structure allows us to design explicit symplectic
numerical methods.

To illustrate the Hamiltonian structure of this system, we introduce ph := Mhvh,
and an energy function

H(u, v, uh, ph)

=
∫ L

0

[
1
2
v2 + c2

2
u2x +

κ2

2
u2xx

]
dx + 1

2Mh
ph2 +

Kh

α + 1
([⟨ε, u⟩ − uh]+)α+1. (4)

123



A. Ishikawa et al.

This is a separable Hamiltonian in the sense that H is written as a sum of two functions:

H(u, v, uh, ph) = T (v, ph)+U (u, uh),

T (v, ph) =
∫ L

0

[
1
2
v2
]
dx + 1

2Mh
ph2,

U (u, uh) =
∫ L

0

[
c2

2
u2x +

κ2

2
u2xx

]
dx + Kh

α + 1
([⟨ε, u⟩ − uh]+)α+1.

Then it is straightforward to check the following theorem.

Theorem 1 The model (1, 2) is equivalent to

⎛

⎜⎜⎝

ut
u̇h
vt
ṗh

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞

⎟⎟⎠

(
δH

δu

∂H

∂uh

δH

δv

∂H

∂ph

)⊤

+

⎛

⎜⎜⎝

0
0

−d1v + d3vxx − εKh([⟨ε, u⟩ − uh]+)αµvr
Kh([⟨ε, u⟩ − uh]+)αµvr

⎞

⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

v

ph
Mh

c2uxx − κ2uxxxx − εKh([⟨ε, u⟩ − uh]+)α(1+ µvr) − d1v + d3vxx
Kh([⟨ε, u⟩ − uh]+)α(1+ µvr)

⎞

⎟⎟⎟⎟⎠
.

Moreover, if the damping coefficients µ, d1 and d3 vanish, the system is a separable
Hamiltonian system.

We show the energy behavior of this model in the following theorem.

Theorem 2 Under the boundary conditions (3), the energy function H is not increas-
ing:

dH
dt

= − µv2r Kh([⟨ε, u⟩ − uh]+)α − d1

∫ L

0
v2 dx − d3

∫ L

0
v2x dx ≤ 0.

Moreover, if µ = d1 = d3 = 0, the system is conservative.

Proof From the integrationbyparts and theboundary conditionsu(t, 0) = uxx (t, 0) =
u(t, L) = uxx (t, L) = 0, we obtain

dH
dt

=
∫ L

0

[
vvt − c2uxxut + κ2uxxxxut + Kh([⟨ε, u⟩ − uh]+)αεut

]
dx

+
[
c2uxut

]L
0
+
[
κ2uxxuxt

]L
0
−
[
κ2uxxxut

]L
0
+ ph

Mh
ṗh−Kh([⟨ε, u⟩−uh]+)α u̇h
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=
∫ L

0

[
vvt − c2uxxut + κ2uxxxxut + Kh([⟨ε, u⟩ − uh]+)αεut

]
dx

+ ph
Mh

ṗh − Kh([⟨ε, u⟩ − uh]+)α u̇h.

Substitution leads to

dH
dt

=
∫ L

0

[
vt − c2uxx + κ2uxxxx + εKh([⟨ε, u⟩ − uh]+)α)

]
vdx

+ ph
Mh

Kh([⟨ε, u⟩ − uh]+)α(1+ µvr) − Kh([⟨ε, u⟩ − uh]+)α
ph
Mh

= µvr
ph
Mh

Kh([⟨ε, u⟩ − uh]+)α − µvr⟨ε, v⟩Kh([⟨ε, u⟩ − uh]+)α

− d1

∫ L

0
v2 dx + d3

∫ L

0
vvxx dx .

Because vr = ⟨ε, v⟩ − ph/Mh holds and the boundary condition implies v(t, 0) =
v(t, L) = 0, we obtain

dH
dt

= − µv2r Kh([⟨ε, u⟩ − uh]+)α − d1

∫ L

0
v2 dx − d3

∫ L

0
v2x dx ≤ 0.

⊓)

3 Variational semi-discretization and the application to the piano model

In order to make use of geometric integrators, a spatial discretization that preserves
the Hamiltonian structure is required. The semi-discretization is typically done by
replacing the spatial differential operators in the target equation by spatial difference
operators, or using the finite element method. However, the resulting scheme does
not always admit the Hamiltonian structure by using such approaches. To avoid the
absence of the Hamiltonian structure, we use the variational semi-discretization [13]
where the Hamiltonian is first discretized and then a semi-discrete scheme is obtained
by variational calculus (see Fig. 2). This process automatically leads to a semi-discrete
Hamiltonian scheme.

In what follows, for illustration purpose this procedure is applied to the Hamilton
equation describing the piano model without the damping terms. We use a uniform
mesh with a step size ∆x = L/N so that N + 1 equals to a total number of points
in the interval [0, L], and denote the approximated value of p(t, l∆x) with pl(t), or
pl by omitting the argument t . We also denote a forward, a backward and a second
difference operator with

δ+x ql =
ql+1 − ql

∆x
, δ−

x ql =
ql − ql−1

∆x
and δ⟨2⟩

x ql =
ql+1 − 2ql + ql−1

∆x2
,
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Fig. 2 This diagram shows the core idea of the variational semi-discretization. In typical approaches (shown
by the dashed lines) the equation is directly discretized and hence the Hamiltonian structure may not be
preserved. Instead, in this approach (shown by the solid lines) the Hamiltonian is discretized first and then
the semi-discrete scheme is obtained as the Hamilton equation. This procedure automatically leads to a
Hamiltonian semi-discrete scheme

respectively. We first consider the phase space:

X̃ :={ũ ∈ RN+3 | ũ = (ũ−1 ũ0 ũ1 · · · ũN−1 ũN ũN+1)
⊤}. (5)

For ũ, ṽ ∈ X̃ , we define the discrete Hamiltonian H̃d in X̃ using the trapezoidal rule
to approximate the integral in H :

H̃d(ũ, ṽ, uh, ph)

=
[
1

2
v20 +

c2

2

(
δ+x u0

)2 +
(
δ−
x u0

)2

2
+ κ2

2

(
δ⟨2⟩
x u0

)2
]

∆x

2

+
N−1∑

l=1

[
1

2
v2l +

c2

2

(
δ+x ul

)2 +
(
δ−
x ul

)2

2
+ κ2

2

(
δ⟨2⟩
x ul

)2
]

∆x

+
[
1

2
v2N + c2

2

(
δ+x uN

)2 +
(
δ−
x uN

)2

2
+ κ2

2

(
δ⟨2⟩
x uN

)2
]

∆x

2

+ 1

2Mh
p2h +

Kh

α + 1

(
[⟨ε, ũ⟩X̃ − uh]+

)α+1
, (6)

where ε ∈ X̃ is an approximation of the function ε(x) and ⟨·, ·⟩X̃ means

⟨ũ, ṽ⟩X̃ = ũ0ṽ0
∆x

2
+

N−1∑

l=1

ũl ṽl∆x + ũN ṽN
∆x

2
(7)

for ũ, ṽ ∈ X̃ .

Remark 2 Regarding the approximation to the term ux in H , we chose

ux (t, l∆x)2 ≈ (δ+x ul)
2 + (δ−

x ul)
2

2
,
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which is a typical choice in [26]; however, we can also use, for example, the central
difference and define the Hamiltonian as

˜̃Hd(ũ, ṽ, uh, ph)

=

⎡

⎣1

2
v20 +

c2

2

(
δ+x + δ−

x

2
u0

)2

+ κ2

2

(
δ⟨2⟩
x u0

)2
⎤

⎦ ∆x

2

+
N−1∑

l=1

⎡

⎣1

2
v2l +

c2

2

(
δ+x + δ−

x

2
ul

)2

+ κ2

2

(
δ⟨2⟩
x ul

)2
⎤

⎦∆x

+

⎡

⎣1

2
v2N + c2

2

(
δ+x + δ−

x

2
uN

)2

+ κ2

2

(
δ⟨2⟩
x uN

)2
⎤

⎦ ∆x

2

+ 1

2Mh
p2h +

Kh

α + 1

(
[⟨ε, ũ⟩X̃ − uh]+

)α+1
.

As is pointed out in pp. 90–91 of [26], it is difficult to judge whether a choice of
the approximations of H defines a useful scheme or not, because it depends on the
equation and possibly on other factors. Hereinafter we mainly use H̃d as the discrete
Hamiltonian because it is found from the numerical tests, which are shown in Fig. 4

in Sect. 4, that the numerical solutions derived by using ˜̃Hd converge to the exact ones
slower than that derived by using H̃d.

The boundary conditions corresponding to (3) are imposed by

u0 = uN = 0, u1 = −u−1, and uN−1 = −uN+1, (8)

and by using them, we can rewrite H̃d without the boundary terms u−1, u0, uN and
uN+1.

This is equivalent to the restriction of H̃d to the subspace of X̃ :

X = {u ∈ X̃ | u0 = uN = 0, u1 = −u−1, uN−1 = −uN+1} ≃ RN−1.

We denote this restricted discrete Hamiltonian with Hd. For u, v ∈ X , Hd is defined
as

Hd(u, v, uh, ph)

=

⎡

⎣c2

2

(
u1
∆x

)2
⎤

⎦ ∆x

2

+

⎡

⎣c2

2

(
δ+x u1

)2 + (u1/∆x)2

2
+ κ2

2

(
u2 − 2u1

∆x2

)2
⎤

⎦∆x
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+
N−2∑

l=2

[
c2

2

(
δ+x ul

)2 +
(
δ−
x ul

)2

2
+ κ2

2

(
δ⟨2⟩
x ul

)2
]

∆x

+

⎡

⎣c2

2

(uN−1/∆x)2 +
(
δ−
x uN−1

)2

2
+ κ2

2

(
− 2uN−1 + uN−2

∆x2

)2
⎤

⎦∆x

+

⎡

⎣c2

2

(
uN−1

∆x

)2
⎤

⎦ ∆x

2

+
N−1∑

l=1

1

2
v2l ∆x + 1

2Mh
p2h +

Kh

α + 1

(
[⟨ε, u⟩X − uh]+

)α+1
, (9)

where ⟨·, ·⟩X means

⟨u, v⟩X =
N−1∑

l=1

ulvl∆x for all u, v ∈ X . (10)

We note that this is equivalent to (7) under the boundary condition (8).
We calculate the partial derivatives of Hd to obtain the gradient in the Hamilton

equation. The partial derivatives of Hd with respect to ul and vl (l = 1, . . . , N − 1)
are

∂Hd

∂u1
=
{
−c2

− 2u1 + u2
∆x2

+ κ2 5u1 − 4u2 + u3
∆x4

+ ε1Kh([⟨ε, u⟩X − uh]+)α
}
∆x,

∂Hd

∂u2
=
{
−c2

u1 − 2u2 + u3
∆x2

+ κ2 − 4u1 + 6u2 − 4u3 + u4
∆x4

+ ε2Kh([⟨ε, u⟩X − uh]+)α
}
∆x,

∂Hd

∂ul
=
{
−c2

ul−1 − 2ul + ul+1

∆x2
+ κ2 ul−2 − 4ul−1 + 6ul − 4ul+1 + ul+2

∆x4

+ εl Kh([⟨ε, u⟩X − uh]+)α
}
∆x, (l = 3, 4, . . . , N − 3)

∂Hd

∂uN−2
=
{
−c2

uN−3 − 2uN−2 + uN−1

∆x2
+ κ2 uN−4 − 4uN−3 + 6uN−2 − 4uN−1

∆x4

+ εN−2Kh([⟨ε, u⟩X − uh]+)α
}
∆x,

∂Hd

∂uN−1
=
{
−c2

uN−2 − 2uN−1

∆x2
+ κ2 uN−3 − 4uN−2 + 5uN−1

∆x4

+ εN−1Kh([⟨ε, u⟩X − uh]+)α
}
∆x,

∂Hd

∂vl
= vl∆x, (l = 1, 2, . . . , N − 1)
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and the partial derivatives with respect to uh and ph are

∂Hd

∂uh
= −Kh([⟨ε, u⟩X − uh]+)α,

∂Hd

∂ph
= ph

Mh
.

We denote the difference matrices of order N − 1 with

D2 =
1

∆x2

⎛

⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞

⎟⎟⎟⎟⎟⎠
, D4 =

1

∆x4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The semi-discrete scheme is defined by the following separable Hamiltonian system:

d

dt

⎛

⎜⎜⎝

u
uh
v
ph

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

I 0
0⊤ 1

−I 0
0⊤ −1

⎞

⎟⎟⎠
(
∇uH⊤

d ∇uhHd ∇vH⊤
d ∇phHd

)⊤

=

⎛

⎜⎜⎝

I 0
0⊤ 1

−I 0
0⊤ −1

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

−c2D2u + κ2D4u + εKh([⟨ε, u⟩X − uh]+)α
−Kh([⟨ε, u⟩X − uh]+)α

v
ph
Mh

⎞

⎟⎟⎟⎟⎠
,

(11)

where ∇q Hd means the gradient of Hd in the q direction associated with the inner
product (10). In the following theorem we address the energy behavior of this model.

Theorem 3 The semi-discretized Hamiltonian system (11) preserves the discretized
energy function Hd (9), i.e.

dHd

dt
= 0.

Remark 3 This theorem is generalized to include the damping terms in Theorem 5,
and a proof is given there.
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4 Application of symplectic integrators

We apply symplectic partitioned Runge–Kutta (PRK) methods to (11) for illustration
purpose. PRK methods are a series of numerical methods for equations of the form

dy(t)

dt
= F(y(t), z(t)),

dz(t)

dt
= G(y(t), z(t)). (12)

Definition 1 Let ai j , bi , and âi j , b̂i be the coefficients of two Runge–Kutta methods.
Then, an s-stage PRK method for (12) with a step size ∆t is given by

ki = F

⎛

⎝yn + ∆t
s∑

j=1

ai j k j , zn + ∆t
s∑

j=1

âi j l j

⎞

⎠ ,

li = G

⎛

⎝yn + ∆t
s∑

j=1

ai j k j , zn + ∆t
s∑

j=1

âi j l j

⎞

⎠ ,

yn+1 = yn + ∆t
s∑

i=1

bi ki , zn+1 = zn + ∆t
s∑

i=1

b̂i li . (13)

As mentioned above, long-time computations are required for the simulation of musi-
cal sounds. For this reason, in addition to accuracy, we need to take long-term stability
and computational efficiency into consideration. All these three requirements are ful-
filled by the application of a special class of PRK methods. As explained before, if
a method is symplectic, the method has superior long-term stability in most cases.
The following theorem identifies the condition for PRKmethods to be symplectic; see
[33,50,51].

Theorem 4 (Symplectic Partitioned Runge–Kutta (SPRK) Method) An s-stage PRK
method (13) is symplectic if it satisfies the conditions

{
bi = b̂i ,
bi âi j + b̂ j a ji − bi b̂ j = 0,

for i = 1, . . . , s, j = 1, . . . , s.

The first condition is not necessary if the system is a separable Hamiltonian system.

Although the PRK method is available for any semi-discretized equation, the SPRK
method requires the Hamiltonian structure for the equations. The semi-discretization
in the way of Sect. 3 allows us to apply the SPRK method to any Hamiltonian PDEs.
In addition, if carefully designed, symplectic and explicit methods can be designed for
separableHamiltonians; see [29]. Thesemethods are not only being explicit.Moreover,
they have a favourable implementation where no additional storage is necessary. We
use the coefficients of Table 3 to achieve the above properties. A PRK method with
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Table 3 The Butcher tableau of an s-stage SPRK method

b1 0 0 · · · 0
b1 b2 0 · · · 0
b1 b2 b3 · · · 0
...

...
...

. . .
...

b1 b2 b3 · · · bs
b1 b2 b3 · · · bs

0 0 0 · · · 0
b̂1 0 0 · · · 0
b̂1 b̂2 0 · · · 0
...

...
...

. . .
...

b̂1 b̂2 b̂3 · · · 0
b̂1 b̂2 b̂3 · · · b̂s

these coefficients becomes symplectic and explicit for separable Hamiltonian systems.
Following [50], we write the coefficients of Table 3 as

(b1, b2, . . . , bs)[b̂1, b̂2, . . . , b̂s].

Furthermore, these coefficients enable us to use Algorithm 1 to reduce the amount of
storage. In Algorithm 1, for example, Q0 can be overwritten on qn and this applies
also for other Qi ’s.

In summary, when using model (11) and a PRKmethod with the coefficients shown
in Table 3, the method becomes explicit and symplectic because of the separability of
the Hamiltonian system. Furthermore using Algorithm 1 the method is implemented
with small amount of storage.

Algorithm 1 SPRK method.
Q0 ← qn ,
P1 ← pn ,
for i ← 1, . . . , s do

Qi ← Qi−1 + ∆t b̂i G(Pi ),
Pi+1 ← Pi + ∆t bi F(Qi , Pi ),

end for
qn+1 ← Qs ,
pn+1 ← Ps+1

We tested three numerical schemes for the computation of piano sounds. These
schemes are obtained by applying the SPRK methods to

d

dt

⎛

⎜⎜⎝

u
uh
v
ph

⎞

⎟⎟⎠ =
(

O I
−I O

)(
F(u, uh, v, ph)

G(v, ph)

)
, (14)
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F(u, uh, v, ph)

:=
(

−c2D2u+κ2D4u+εKh([⟨ε, u⟩X − uh]+)α(1+ µvr,d)+ d1v − d3D2v
−Kh([⟨ε, u⟩X − uh]+)α(1+ µvr,d)

)
,

G(v, ph) :=
(
v⊤ ph

Mh

)⊤
, vr,d := ⟨ε, v⟩X − ph

Mh
,

or, equivalently,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇l = vl , (l = 1, 2, . . . , N − 1)

u̇h =
ph
Mh

,

v̇1 = c2
− 2u1 + u2

∆x2
− κ2 5u1 − 4u2 + u3

∆x4

− ε1Kh([⟨ε, u⟩X − uh]+)α(1+ µvr,d) − d1v1 + d3
− 2v1 + v2

∆x2
,

v̇2 = c2δ⟨2⟩
x u2 − κ2 − 4u1 + 6u2 − 4u3 + u4

∆x4
− ε2Kh([⟨ε, u⟩X − uh]+)α(1+ µvr,d) − d1v2 + d3δ

⟨2⟩
x v2,

v̇l = c2δ⟨2⟩
x ul − κ2δ

⟨4⟩
x ul − εl Kh([⟨ε, u⟩X − uh]+)α(1+ µvr,d)

− d1vl + d3δ
⟨2⟩
x vl , (l = 3, . . . , N − 3)

v̇N−2 = c2δ⟨2⟩
x uN−2 − κ2 uN−4 − 4uN−3 + 6uN−2 − 4uN−1

∆x4
− εN−2Kh([⟨ε, u⟩X − uh]+)α(1+ µvr,d) − d1vN−2 + d3δ

⟨2⟩
x vN−2,

v̇N−1 = c2
uN−2 − 2uN−1

∆x2
− κ2 uN−3 − 4uN−2 + 5uN−1

∆x4

− εN−1Kh([⟨ε, u⟩X − uh]+)α(1+ µvr,d) − d1vN−1 + d3
vN−2 − 2vN−1

∆x2
,

ṗh = Kh([⟨ε, u⟩X − uh]+)α(1+ µvr,d),

(15)

where δ
⟨4⟩
x := δ

⟨2⟩
x δ

⟨2⟩
x . These are the semi-discretized Eq. (11) along with the damping

terms added for realistic behavior. The energy behavior of this system is described by
the following theorem.

Theorem 5 The discrete energy function Hd (9) is not increasing:

dHd

dt
= − µv2r,dKh([⟨ε, u⟩X − uh]+)α − d1

N−1∑

l=1

v2l ∆x

− d3

[
(δ+x v0)

2 + (δ−
x v0)

2

2

∆x

2
+

N−1∑

l=1

(δ+x vl)
2 + (δ−

x vl)
2

2
∆x

+ (δ+x vN )
2 + (δ−

x vN )
2

2

∆x

2

]
≤ 0.

Moreover, if µ = d1 = d3 = 0, the system is conservative according to Theorem 3.
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Proof From the differentiation of Hd, we obtain

dHd

dt
= dH̃d

dt

=
[

v0v̇0 + c2
(δ+x u0)(δ

+
x u̇0)+ (δ−

x u0)(δ
−
x u̇0)

2
+ κ2(δ⟨2⟩

x u0)(δ⟨2⟩
x u̇0)

]
∆x

2

+
N−1∑

l=1

[
vl v̇l + c2

(δ+x ul)(δ
+
x u̇l)+ (δ−

x ul)(δ
−
x u̇l)

2
+ κ2(δ⟨2⟩

x ul)(δ⟨2⟩
x u̇l)

]
∆x

+
[

vN v̇N + c2
(δ+x uN )(δ

+
x u̇N )+(δ−

x uN )(δ
−
x u̇N )

2
+ κ2(δ⟨2⟩

x uN )(δ
⟨2⟩
x u̇N )

]
∆x

2

+ ph
Mh

ṗh + Kh([⟨ε, u⟩X − uh]+)α(⟨ε, u̇⟩X − u̇h).

Instead of the integration by parts, we introduce the summation by parts [22]:

a0(δ+x b0)
∆x

2
+

N−1∑

l=1

al(δ+x bl)∆x + aN (δ+x bN )
∆x

2

+ (δ−
x a0)b0

∆x

2
+

N−1∑

l=1

(δ−
x al)bl∆x + (δ−

x aN )bN
∆x

2

= −1

2
(a0b1 + a−1b0)+

1

2
(aNbN+1 + aN−1bN ) .

Using the summation by parts, we obtain

dHd

dt
= −

[
c2

2

{
(δ+x u0)u̇1 + (δ+x u−1)u̇0

2
+ u̇0(δ

−
x u1)+ u̇−1(δ

−
x u0)

2

}

+ κ2
(δ

⟨2⟩
x u0)(δ

−
x u̇1)+ (δ

⟨2⟩
x u−1)(δ

−
x u̇0)

2

]

+ κ2
u̇0(δ

−
x δ

⟨2⟩
x u1)+ u̇−1(δ

−
x δ

⟨2⟩
x u0)

2

+
[
v0v̇0 − c2(δ⟨2⟩

x u0)u̇0 + κ2(δ
⟨4⟩
x u0)u̇0 + Kh([⟨ε, u⟩X − uh]+)αε0u̇0

]
∆x

2

+
N−1∑

l=1

[
vl v̇l − c2(δ⟨2⟩

x ul )u̇l + κ2(δ
⟨4⟩
x ul )u̇l + Kh([⟨ε, u⟩X − uh]+)αεl u̇l

]
∆x

+
[
vN v̇N − c2(δ⟨2⟩

x uN )u̇N + κ2(δ
⟨4⟩
x uN )u̇N + Kh([⟨ε, u⟩X − uh]+)αεN u̇N

]
∆x

2
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− κ2
u̇N (δ

−
x δ

⟨2⟩
x uN+1)+ u̇N−1(δ

−
x δ

⟨2⟩
x uN )

2

+
[
c2

2

{
(δ+x uN )u̇N+1 + (δ+x uN−1)u̇N

2
+ u̇N (δ

−
x uN+1)+ u̇N−1(δ

−
x uN )

2

}

+ κ2
(δ

⟨2⟩
x uN )(δ

−
x u̇N+1)+ (δ

⟨2⟩
x uN−1)(δ

−
x u̇N )

2

]

+ ph
Mh

ṗh − Kh([⟨ε, u⟩X − uh]+)α u̇h

=
N−1∑

l=1

[
vl v̇l − c2(δ⟨2⟩

x ul )u̇l + κ2(δ
⟨4⟩
x ul )u̇l + Kh([⟨ε, u⟩X − uh]+)αεl u̇l

]
∆x

+ ph
Mh

ṗh − Kh([⟨ε, u⟩X − uh]+)α u̇h.

We used the boundary conditions (8) at the last equality. Substituting the semi-
discretized scheme (15), we get

dHd

dt
=

N−1∑

l=1

{
v̇l − c2(δ⟨2⟩

x ul)+ κ2(δ⟨4⟩
x ul)+ Kh([⟨ε, u⟩X − uh]+)αεl

}
vl∆x

+ ph
Mh

Kh([⟨ε, u⟩X − uh]+)α(1+ µvr,d) − Kh([⟨ε, u⟩X − uh]+)α
ph
Mh

= µvr,d
ph
Mh

Kh([⟨ε, u⟩X − uh]+)α − µvr,d⟨ε, v⟩X Kh([⟨ε, u⟩X − uh]+)α

− d1
N−1∑

l=1

v2l ∆x + d3
N−1∑

l=1

(δ⟨2⟩
x vl)vl∆x

= −µv2r,dKh([⟨ε, u⟩X − uh]+)α − d1
N−1∑

l=1

v2l ∆x

− d3

[
(δ+x v0)

2 + (δ−
x v0)

2

2
∆x
2

+
N−1∑

l=1

(δ+x vl)
2 + (δ−

x vl)
2

2
∆x

+ (δ+x vN )
2 + (δ−

x vN )
2

2
∆x
2

]
≤ 0.

⊓)

In the following numerical tests, we confirm that sounds generated by the numerical
schemes derived by the above procedure certainly have basic characteristics of piano
tones. We tested the 3-stage 3rd-order, the 4-stage 4th-order, and the 6-stage 4th-order
SPRK methods with the following coefficients:
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(−1/24, 3/4, 7/24)[1,−2/3, 2/3],
(ω, ν,ω, 0)[ω/2, (ω + ν)/2, (ω + ν)/2,ω/2],
(−1/48, 3/8, 7/24, 3/8,−1/48, 0)[1/2,−1/3, 1/3, 1/3,−1/3, 1/2],

where ω = (2+ 21/3+ 2−1/3)/3 and ν = 1− 2ω; see [51]. The initial conditions are

u(0, x) = v(0, x) = 0, uh(0) = 0.0005, ph = −4.0Mh.

We employed the approximated delta function ε(lh) used in [9]:

(ε(lh))l =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−βh(βh − 1)(βh − 2)/(6∆x), (l = lh − 1)
(βh − 1)(βh + 1)(βh − 2)/(2∆x), (l = lh)
−βh(βh + 1)(βh − 2)/(2∆x), (l = lh + 1)
βh(βh − 1)(βh + 1)/(6∆x), (l = lh + 2)
0. (otherwise)

According to [9], this is a 3rd-order approximation of δ(x − (βh+ lh)∆x). Because in
(11) the central difference operators are used in the spatial direction, the entire scheme
becomes 2nd-order in space. We used the values of u(t, 0.7L) as the computed sound
waves and also set lh = 0.2N and βh = 0.3.

Before testing the piano sound, we investigate the validity of the discretization
method for H . We excluded the damping terms and the hammer, and only consider
the Hamilton PDE that describes the string in this validation. Figure 3 shows the
comparison of the numerical solutions by the 4-stage 4th-order SPRKunder the various
values of ∆t and ∆x with the following exact solution under the boundary condition
(3):

u(t, x) =
15∑

m=1

sin

(

mπ
x

L

)(
Am cos(

√
λmt)+ Bm sin(

√
λmt)

)
, (16)

λm = c2
(
mπ

L

)2

+ κ2

(
mπ

L

)4

. (17)

We set two constants above to Am = Bm = 1/15. We also used this exact solution at
t = 0 as the initial condition. The graph in Fig. 3 shows that the numerical solution
indeed converges to the exact solution as ∆t → 0 and ∆x → 0. This is in fact
quantitatively confirmed in Table 4, where the L2-norm and the L∞-norm are defined
by

||e(t)||2 =
(
N−1∑

l=1

|el(t)|2∆x

)1/2

, ||e(t)||∞ = maxl=1,...,N−1|el(t)|,

e(t) = (e1(t) . . . eN−1(t)), el(t) = ût/∆t
l − u(t, l∆x).
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Fig. 3 Comparison of the numerical solutions by the 4-stage 4th-order SPRK with the exact solution
by using the piano model without the terms regarding the hammer and the damping of the string. This
graph shows the numerical solution u at t = 0.1 in the various conditions. The numerical solutions indeed
converge to the exact solution as ∆t → 0 and ∆x → 0

Table 4 Errors of the numerical solution of (11) without the hammer and the damping terms by the 4-stage
4th-order SPRK

∆t N ||e(0.1)||2 ||e(0.1)||∞

44100−1 40 2.80314 × 10−1 5.41141 × 10−1 (x = 0.4410)

(44100 × 10)−1 100 4.68303 × 10−1 5.85610 × 10−1 (x = 0.1134)

(44100 × 100)−1 1000 1.5081 × 10−2 5.97745 × 10−2 (x = 0.0233)

(44100 × 200)−1 1500 3.7458 × 10−3 2.64958 × 10−2 (x = 0.0231)

Fig. 4 The numerical solutions of the scheme derived by using ˜̃Hd. Although ∆t and ∆x are the same or
less, the waveform of that by H̃d is closer to the exact solution than the other two results
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Fig. 5 Comparison of the 4-stage 4th-order SPRKwith the exact solution by using the pianomodel without
the terms regarding the hammer and the damping of the string. These graphs show the gap of the discrete
energy between the computed and the exact value with Am = Bm = 10−5 and N = 100. The discrete
energy also converges to the exact value as ∆t → 0
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Fig. 6 The waveforms of the string computed with the three SPRK methods with N = 1000 for 1 s. The
graph on the top is the numerical solution computedwith the 4-stage 4th-order method, the one in themiddle
is computed with the 3-stage 3rd-order method and the bottom one with the 6-stage 4th-order method
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Fig. 7 The waveform of the string computed with the 4-stage 4th-order SPRK method with N = 1000.
This is the waveform from 0.4 to 0.45 s. We find that some waves are regularly repeated and expect that this
includes the integer multiple of the frequency of 261.63Hz which corresponds to the note C4

We also show the numerical solutions of the scheme derived by using ˜̃Hd in Fig. 4.
Although we used the same or less∆t and∆x , the waveform of that by H̃d is closer to
the exact solution. Figure 5 shows the gap between the computed value and the exact
value of the discrete energy with Am = Bm = 10−5 and N = 100. The exact value of
the discrete energy is approximately equal to 0.110. We used ∆t = 1/(44,100 · 200)
and N = 1000 hereinafter if it is not specifically noted.

Figure 6 shows the numerical solutions obtained by the 3-stage 3rd-order, the 4-
stage 4th-order, and the 6-stage 4th-order SPRK schemes for (14).

Any significant difference is not observed between these figures. We also compare
the notes calculated by each method by carefully listening to them; however we did
not notice a difference again. Hence, concerning the computation time, we conclude
that the 3-stage or the 4-stage method is practical enough.

Figure 7 is the enlarged figure of the waveform of the 4-stage 4th-order SPRK
method.We find that this waveform is formed by repeating several kinds of waves with
different amplitudes one after the other. This result gives an expectation that this wave-
form is a superposition of the wave of 261.63Hz, which is the frequency of C4, and
integermultiples of it. To confirm this, we show the spectrumof thewaveform in Fig. 8.

There are large peaks expectedly near the positive integer multiples of 261.63Hz.
The notes of a real piano are indeed a superposition of such frequency components.
Actually the spectrum shown in Fig. 8 is similar to those reported in the literature; see
[18].

Figure 9 shows the gap of the energy Hd (9) between the value of the numerical
solution by the 4-stage 4th-order SPRK method and the exact value, which is approx-
imately equal to 4.5496 × 10−2. We excluded the damping terms in this numerical
test so that the energy is preserved.

The graph on the top shows that the displacements are within a certain range despite
a large amount of the calculation steps ( 44,100,000 steps for 10 s). This energy behav-

123



A. Ishikawa et al.

Fig. 8 The spectrum of the numerical solution computed with the 4-stage 4th-order SPRK method with
N = 1000. The spectrum under 10,000Hz is shown at the top and the enlarged one under 2000Hz at the
bottom. The frequency of a note C4 is 261.63Hz and the large peaks are observed near the integer multiples
of 261.63Hz

ior is due to the symplectic property of themethod and shows that the proposed scheme
certainly has a superior property regarding stability.Moreover, a similar result to Fig. 3
in which the recovery of the energy conservation law as ∆t → 0 is shown is again
observed in this test.

Figures 10, 11, 12 show the result when the number of points N is changed from
1000 to 50.We used lh = 0.2N and βh = 0.00945 so that the hammer strikes the same
position (x ≈ 0.126 L) of the string as in the previous experiments. In the first two
experiments, the damping terms are included. Compared to Fig. 6, the waveform in
Fig. 10 is smoother, which implies suppression of high-frequency tones. By carefully
listening to the calculated notes, we in fact noticed that the sound was slightly blurred;
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Fig. 9 The evolutions of the error of the energy of the numerical solutions for the first 10 s computed with
the 4-stage 4th-order SPRKmethod with N = 1000 and ∆t = 1/(44,100 ·10), 1/(44,100 ·100). A similar
result to Fig. 3 which shows the convergence of the energy as ∆t → 0 is observed

on the other hand, as shown in Fig. 11, the power and the peak of the spectrum in the
low-frequency zone are almost unchanged. The gap between the computed and the
exact energy, which is approximately equal to 4.5496 × 10−2, is shown in Fig. 12.
The values of Hd are still within a certain fixed range and converge to the exact value
by ∆t → 0 as well as in the case illustrated in Fig. 9.

5 Conclusion

Recently, much attention has been paid to novel approaches to the development of vir-
tual musical instruments, where the PDEmodels of the components of the instruments
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Fig. 10 The waveforms of the string computed with the 4-stage 4th-order SPRK method. We changed the
number of points N from 1000 to 50. The shape of the outline of the waveform is smoother than that in
Fig. 6

are solved numerically. Since extensively long-time calculations are required to repro-
duce notes even for a few seconds, the computation time is significantly large and the
accumulation of errors is not negligible. Hence numerical schemes for themusical sim-
ulations must be carefully designed—not only accurate and stable, but also efficient.

In this contribution we have introduced a procedure for deriving numerical schemes
for models of musical instruments. The procedure is a combination of the variational
semi-discretization by Celledoni et al. and the symplectic Runge–Kutta methods. The
outline of the variational semi-discretization is illustrated in Fig. 2. This technique
automatically derives a semi-discrete scheme while preserving the Hamiltonian struc-
ture. Thereby, geometric integrators can be immediately appliedwithout any additional
steps. Geometric integrators are numerical integrators of ODEs that preserve a sig-
nificant property of the equations, typically energy conservation or symplecticity. By
preserving one of these properties, the exact or approximated energy is accurately
conserved. Since with this discrete conservation law numerical schemes often have
excellent stability properties, the aboveprocedure facilitates thedesignof several stable
numerical schemes for musical simulations. We focus our attention on the observation
that most PDE models of musical instruments are separable Hamiltonian systems and
also on the fact that a class of SPRK methods yields explicit schemes for this type of
Hamiltonian systems. Based on these facts, we have shown that the combination of the
variational semi-discretization and SPRK methods is a right procedure for deriving
numerical schemes that are suitable for simulations of musical instruments; indeed
this procedure automatically yields explicit and symplectic schemes of a high order
of accuracy for most of the models for musical instruments.

For illustration purposes, we have applied this procedure to a simple piano model
and have derived a series of symplectic integrators by the application of SPRK meth-
ods. In absence of the damping terms, themodel is shown to be a separableHamiltonian
system, so that the schemes are explicit and computationally efficient for computing
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Fig. 11 The spectrum in the law-frequency zone of the numerical solution computed with the 4-stage
4th-order SPRK method with N = 50. The power and the peak of the spectrum in the low-frequency zone
are almost unchanged

piano sounds. We tested the 3-stage 3rd-order, the 4-stage 4th-order, and the 6-stage
4th-order PRK methods numerically and all of them are shown to be sufficiently sta-
ble. Although we used higher order schemes (in time), the 3-stage 3rd-order or the
4-stage 4th-order method may be practical enough; almost no difference is observed
between the waveforms computed by these methods. In particular, the 6-stage method
needs more computational time but the result is almost the same compared to the other
methods used in our numerical experiments.

Since we only took the consideration of the accuracy in the time direction into
account, and only used the 2nd order difference operators in the spatial direction, in
our futureworkweplan to improve accuracy in the space direction. In particular, the use
of higher order compact schemes, which are known to be effective in the calculations
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Fig. 12 The gap between the energy of the numerical solution computed with the 4-stage 4th-order SPRK
method with N = 50 and that of the exact solution. The values are within a fixed range and converge to 0
as ∆t tends to 0

of sound waves [35], is of importance. Also, this procedure must be tested for more
realistic models of musical instruments. In this context, the model of a whole piano
by Chabassier et al. (see [14,15]) is important, for which reason we plan to consider
it in our future work.

From a theoretical perspective, the effectiveness of the application of symplectic
integrators to dissipative systems should be investigated because the model for the
piano has the damping terms. Although this is a challenging problem, there exist a few
results on analyses on this topic (e.g. [6]). The results of these analyses could give an
insight on the qualitative acoustical analyses of computations of musical sounds.
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